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AbstrIId-A nonlinear mixture theory with microstructure is constructed for quasi-one-dimensional heat
conduction in fiber-reinforced composites. The nonJinearities considered result from temperature dependent
thermal properties. In an attempt to infer the accuracy of the mixture theory. an initial boundary-value
problem is selected and a finite difference solution of the mixture equations is compared with a finite
element solution of the original equations. Excellent agreement is found between the two solutions for both
global and micro-temperature fields. System sensitivity to nonJinearities is examined via numerical treat
ment of the mixture equations for Graphite/Epoxy and Carbon/Carbon composites. the results imply that
variations of thermal properties with temperature can lead to significant differences between linear and
nonlinear solutions.

INTRODUCTION
Heat conduction parallel to the fibers of a unidirectional fibrous composite is a problem of
considerable practical importance for those cases in which such composites are used as thermal
protection materials. Most materials currently used for this purpose exhibit temperature
dependent diffusive properties. The resulting nonlinearities render analytical treatment intract
.able. On the other hand, if information regarding thermal states in the fiber and matrix is
desired, then three spatial dimensions are involved and a direct numerical treatment may
become extremely expensive.

A continuum mixture theory offers an alternative to a direct numerical approach when a
slight loss in accuracy is acceptable; the latter usually lies within the zone of uncertainty of
material properties for practical composites. Such a theory is developed in this paper using the
Regular Asymptotic Method[l), and the concentric cylinders approximation[2].

Following development of the theory, numerical computations are performed for
Graphite/Epoxy and Carbon/Carbon composites in an effort to assess the influence of non
linearities. In an attempt to infer the accuracy of the nonlinear mixture theory, mixture
solutions are also compared with the results obtained using a finite element solution of the
original field equations.

FORMULATION

Consider a periodic hexagonal array of circular cylindrical fibers (Constituent J) embedded
in a matrix (Constituent 2) as shown in Fig. J. With respect to a polar coordinate system ;, 8, i,
let the composite occupy the domain O:s i :s I, O:s ; < 00, O:s 8< 217'. We assume that the initial
conditions and temperature or heat flux boundary conditions on i =0, I are such that the
temperature distribution is similar in each hexagonal cell. As a consequence, the external
boundary of the cell becomes a surface of symmetry, and the components of the heat flux
normal to this hexagonal boundary vanish. In addition, it is assumed that no thermal resistance
exists across the interface between the fiber and the matrix.

The problem is further simplified by assuming, as in [3], that a typical hexagonal cell may be
approximated by concentric cylinders. As a result of this approximation the temperature
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Fig. 1. Geometry and coordinate system.

distribution within the unit cell is axisymmetric, with zero heat flux normal to the outer circular
boundary of the matrix.

The basic equations for the temperature fields flol and heat flux vector (Qx(o" Q,lo) are
(a) Conservation of energy:

(I)

where

A(I) a [0, Rd, A(2) a [Rio R2);

(b) Fourier's law of heat conduction:

(2)

In the above, superscript a = 1,2 refers to the fiber and matrix, respectively. The quantities ii,
ku , k" denote heat capacity, and axial- and transverse thermal conductivities. In what follows
these are assumed to be polynomial functions in f<Ol. We use the notation al ( ) == a( )1ai,
a,( )= a( )/ar, and a;< )= a( )/a; where; denotes time.

In addition to (1) and (2), the initial boundary value problem is completed with
(c) Symmetry conditions:

Qpl(i, R2, i) = 0;

(d) Interface conditions:

(e) Initial condition at ; =0 and appropriate boundary data at i =0, I.

(3)

(4)

Scaling procedure
Equations (1)-(4) and conditions (e) specify a well-posed problem involving i, ., and 1. The

objective of the subsequent analysis is to derive simplified differential equations governing the
macroscopic diffusion process which involve only one spatial dimension i and yet reflect the
effect of conduction on the microscale.

Let Aand R2 be a typical "macrodimension" and "microdimension," respectively. The
macrolength Amay be defined in terms of a characteristic thermal diffusion time in the
longitudinal direction according to

(5a)

where iicmlo kcm ) denote mixture heat capacity and thermal conductivity, respectively. These
quantities will be defined later. In addition to (5a), it is helpful to introduce a mixture heat flux
Qlmlo based upon a reference temperature To, according to

(5b)
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and a parameter E as
E=Ri'fi. (5c)

which represents the ratio of micro·to-macro dimensions of the composite.
With the aid of the foregoing definitions, the following nondimensional variables are now

defined:
(x, u) = (x, r)/A, R1 = RdR2, 1 = it~Ah

(Qx'al, EQ/al) =(Ox,a), O,Ca»IOcm),

Tca) =(Tlal_ To)ITo, IlCa) =ji(al/ji,ml'

(ki~), k~~l) = (ki~), k~~»lk(ml'

Using (5d), the basic equations can be rewritten as follows:
(a) Conservation of energy:

where

and nlll =(RdR2)2 is the volume fraction of the fiber in a cell;

(b) Fourier's law of heat conduction:

(c) Symmetry condition:

Q,'21(X, I, I) = 0;

(d) Interface conditions:

T'1l(x, Vnlll, I) = = T'21(X, Vnlll, I),

Q,'Il(x, Vn(IJ, I) = Q,'2'(X, Vnlll, I);

(5d)

(6)

(7a)

(7b)

(8)

(9a)

(9b)

(e) Initial condition at 1 = 0, and appropriate boundary data at x = 0, IIA.
In the above Ala) denotes Ala) in nondimensional coordinates; partial derivatives are now
defined by ax< )El a( )Iax, a,( )=a( )Iar and a,( ) !IE a( )Ial.

MIXlure equalions
Mixture equations for the diffusion process are obtained by averaging (6) over the cross

sectional area A'a). For this purpose, we define averaged quantities such that

I L"'"(I)f''')(x, I) &::m 2rfll(X, r, I) dr,
n 0

I IIf 2a)(x, I) & ::'i2l
n

' ) I 2rf 2)(x, r, I) dr,
"'"l I

where nlll and nC%) are volume fractions of the two constituents, such that

n'll + nIl) = I.

(lOa)

(lOb)

(II)



424 R MUR~KAMJ et a/.

Upon integration of (6) according to (10), and with use of the interface condition (9b), we obtain
the standard binary mixture form [3],

O.Q}IP) +1L('P)o,TOO) =- P,

o.Q}2p ) +1L(2P)o,T(20) =P.

In the above equations

are "partial" heat fluxes and heat capacities, and

(12)

(13)

(14)

is an "interaction" term reflecting heat transfer ·between the fiber and the matrix across the
interface. At this stage the mixture eqns (12) are exact in the average sense. The primary
object of the subsequent analysis is to construct a closed theory by determining the functional
dependence of the partial heat flux Qx(ap) and the interaction term P on TOol and r<2o).

Asymptotic expansions
A fundamental premise is now introduced; we assume that the ratio of micro-to-macro

dimensions is small compared to unity, Le.

(15)

The assumption (15) suggests the following regular asymptotic expansion for all dependent
variables, denoted by G(a):

a:

G(a)(x, r, t; E) = L E2"GI~~)(x, r, t).
"=0

(16)

(l7a)

(l7b)

(l7c)

If (16) is substituted into the governing equations (6) and (7) and the coefficients of similar order of
E are equated, one obtains a system of equations for each n = 0,1,2, .... Recall that we have
assumed all thermal conductivities and heat capacities may be represented by polynomial
functions of temperature, Le.

k(a)('1"Ia» - k(a) (Tla) +E2k(a) (Tla) T(a) + O(E~)
xx l' - xx(O) 0) xx(2) 0) , (2) ,

k<;)(T(a» =k<;lO)(T!Sl) +E2k<;MT!Sl, Tl~l) + O(E~),

lL(a)(r<a» = IL!Sl(T!sl) + E21L!~l(T!Sl, T!~l)+ O(E~).

The lowest order system is

i/xQ~(6) +1 i/r(rQ~'M»= -lLlsl(T!sl)o,Tlsl on A(a),r

Q(o) - _k(a) (Tla»i/ Tla) on A(a)
.(0) - nCO) 0) % 0) ,

Equation (l8c) implies that

We now develop a mixture theory based upon the lowest order system.

(ISa)

(l8b)

(l8c)

(19)

MIXTURE THEORY BASED ON LOWEST ORDER SYSTEM
We obtain mixture constitutive relations for Qx(ap

) and P from the lowest order system (18).
With (19), eqn (l8b) may be averaged according to (10) which furnishes, to lowest order
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accuracy,
(20)

(note that k~lo)(Tlaa,) =k~n'(aa» due to the polynomial dependency of k~) on Tla». In order
to obtain a relation between P and Tlaa), it is necessary to consider Q:.i'Jh Tii/, and to satisfy
the continuity of temperature (9a) including 0(£2) terms.

To begin, one finds from (7b), (16) and (l7b) that

Qlal - -kla)(Tla»o Tla)
1(0) - " (0) , (2),

where k~o)(Tlgl) =k~)(Tlgl) has been used. Next, using (19) and (21), eqn (l8a) becomes

~ o,{rk~)(Tliil)o,Tl2l} = tpfa)(x, t).

(21)

(22)

The function tpla)(x, t) can be related to the interaction term P, defined by (14), by integration of (22)
over_Ala). With the use of the symmetry condition (8), we find

(23)

(24b)

Thus, to 0(£2) one obtains the following boundary value problem for the function Tlil:

~ o,{,k~)(TlAlo,nm=- ~I) on A(I), (24a)

; o,{,k~)( Tlal>o,Tm} =~ on A12
1,

o,Tgl =0 on , = 1.

TMI(x, t) + E2TH! = Tl~l(x, t) + E
2Tm on , = vin(l),

k~)(TMI)o,TB! = k~)(TI~I)o,Tm on , =vin(l).

(25a)

(25b)

(25c)

Because of the Neumann condition (25a), the solution to the above problem is unique within a
function H(x, t). Without any loss of generality we may combine this function with T!:l(x, t) such
that:

flgl(x, t) == TIOl(x, t) + E
2H(x, t).

Using (26), uniqueness for the field nil can be obtained by setting

TB!=O on ,=0.

(26)

(27)

Since the jump condition (2Sb) involving Tlil on, =VnIl) is independent of " the problem can
be rewritten as a continuous field problem by introducing new variables T*la) such that

The boundary value problem in terms of the new dependent variables T*la) is

; or{rk~)(TlAI)orT*,I)} =-nk on A(I),

! 0 {rk(2)(TI2)o T*,2)} =-L on A(2)r r " 0) r nl~) ,

OrT*,2) =0 on, =I,

T*(I) =T*(2), kW(TMl)orT*(I) =k~)(T~I)orT*12) on, =Vn(l),

T*(I) =0 on, =O.

(28)

(29a)

(29b)

(30)

(31)

(32)
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After slight manipulation. pIll and pm are found to be

Using (26) and (28), the temperature fields can be written to 0(£2) accuracy as

T(I) = f:Wx, t) + £2PT*(I)(x, r, t) + O(£4),

Tl21 = flM(x, t) +E2PT*121(X, r, t) +0(£4).

Upon averaging (34) according to (10) one obtains

(33a)

(33b)

(34)

(35)

Eliminating flM from the above, the interaction term can be written as a function of the
averaged temperature Tlaa)(x, t). Thus,

(36)

where

(37)

By substituting the averages of (33) into (37) one finds

(38)

Approximating n:/ in (38) by Tlaa., the foregoing analysis completes the construction of a
binary mixture theory of the composite. The basic equations of the theory are:

OxQ}lP) +#L(lp)(Tllal)OITlla) =- P, (12a)

oxQxl2P1 +p.12pI(TllO)OIT(2al =P, (12b)

Q}api =- n(alk~~I(T(aa)oxT(aal; a =1,2, (20)

P =,(Tllo)_ TI2a)!£l, (36)

'(T(la) T(2a) - 8/{ I I ( 2 In n(l)Z)} (38)
lo , - k~I(T(la) - kW(Tc2al) 1+nlll + nll)Z •

TEMPERATURE MICROSTRUCTURE AND MIXTURE QUANTITIES
Solution of the foregoing set of equations, with appropriate boundary and initial data,

supplies the macroscopic temperature fields. One may also obtain the temperature micro
structure to a specified degree of accuracy. To this end one first calculates

f~Al(x, t) = Tlaa)(x, t) - ,( Tlla) - TI2a)T*laa); a =1or 2, (39)

from (35) and (36), and substitutes the result in (34).
To obtain expressions for the mixture conductivity and specific heat to be used in (5), we

observe that eqns (12), (20) and (36) yield

(
Tlla) Tlla))

ox{n(l)k~(Tllal)oxTlla)}- n(l)#L(\)(Tlla})OITllal =,(Tlla), Tlla) ~l ,

ox{n(2lk~(Tl2a)axTl2a)} _ n(2)p.(2)(Tllal)OrTl2a) =_,(Tlla), T(la»( Tlla)~ Tl20} (40)
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The addition of (40) gives

u..{nCHk~~( Tl10»u.. TOa) + n(2)k~1(T(20I)u.. T12ol} - {nCHJLCH( TOa)u, TOa) + n(21JL(2)( T(20)u,TI2al} =O.
(41)

In the limit as E -+ 0, the mixture theory reduces to an elementary theory for heat conduction in
a homogeneous material,

limit TlIOI = T12a l.
.-0

(42)

For materials with constant k~) and JL la ) eqn (41) furnishes the appropriate mixture quantities:

k- - n(l)k-(I) +n(21k-(2) ,; =n(l) ,;:(1) +nI2I ,;:(2)
(m)- u u, ,...(m) ,... ,... • (43)

Application of an analogous procedure for materials with temperature dependent thermal
properties requires reasonable estimates for the upper and lower bounds tM and tm of
t(ao)(x, t); a =I, 2of the specific problem under consideration. Accordingly, it is appropriate to
define the reference temperature to in terms of t M and t mas

The mixture quantities can then be defined as:

klm )= _ I _ ftAt
{n(l)k~(~)+n(2)k~W}d~,

TM - Tm tm

(44)

(45)

(46)

(47)

It is noted that the above definitions are not unique. Thus eqns (45) and (46) provide only
one of many possible choices of appropriate mixture quantities. To assure the validity of the
asymptotic expansion of (6) and (7), however, it is necessary that all material properties be of
0(1).

NUMERICAL RESULTS
In crder to test the accuracy of the nonlinear mixture theory, calculations have been

performed to determine the evolution of the temperature field in a quiescent half-space i ~ 0,
subject to the boundary condition

T-(O - t-) ={200, 0..~ I~ lB
,T, 0, tB < t .

This boundary value problem has been solved by using (i) a finite difference solution of the
mixture eqns (12), and (ii) a finite element solution of OH4). The finite element solution of
(IH4) is referenced as the "exact" solution, and is used as the correlating norm. The material
properties used for a first set of computations were selected to represent a Graphite/Epoxy
fiber-reinforced composite[5} and are given in Table I. For the corresponding linear analysis the
thermal properties at -ral =0 were selected. Calculations have been carried out for E =0.9,
thereby comprising a severe test of the mixture theory. Since there is no intrinsic axial length
scale I in the half-plane problem, the pulse duration t. has been used for scaling in (5). Small
values of E correspond, therefore, to short pulse lengths (t.).

The average temperature profiles in the two constituents, a short time before and after the
termination of boundary heating, are shown in Figs. 2(a) and (b). In these figures the "linear"
analysis refers to the mixture theory for materials with temperature independent properties.
(This solution has been shown to be quite accurate in [3}.) In Fig. 3 the evolution of average
temperatures is depicted at a given distance from the boundary.

From these figures it is observed that the agreement between the mixture theory prediction
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Table l. Material properties used for computation

Volume Fractions: n(1) - 0.2 (fiber)

n (2) _ 0.8 (..trix)

Theral Propertiea:

Axial The...1 Conductivity k~)
Heat Capact ty ij<a)

Radial Thera1 Conductivity ~~)

Fiber
k~~) - 10 • 0.01 r(l) ij<l) _ 0.875 + 0.004 r<1)

(a-I}
k~~) - 8

. 0.008 i(1) • 5 x 10.6 (i(1»2

i(2) _ 1 + 0.005 r(2)
ii(2) _ 1 + 0.002 r<2)xx

!latrix
(a-2) i(2) _ 1 + 0.005 i(2) + 1.5 x 10.6 (T(2»2

rr
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Fig. 2(a). Profiles of average temperatures at I = 0.8 (f = 0.9).
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Fig. 2(b). Profile of average temperature at t = 1.2 «( = 0.9).
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Fig. 3. Evolution of average temperatures at x =0.6 «( =0.9).

and the exact solution is excellent even in the situation E == I. The significant differences evident
between the two averaged temperatures endorse the soundness of the present approach when
compared to an effective modulus-type theory. Such a theory allows only one macroscopic
temperature field. An additional computation revealed that the effect of transverse isotropy was
negligible for the material properties chosen in Table I.

The ability of the mixture theory to predict the temperature microstructure is illustrated in
Fig. 4. The radial distribution of temperature obtained from the mixture theory is practically
indistinguishable from the "exact" solution for this problem.

In the foregoing problem the thermal properties depend weakly on temperature; the results
imply, however, that the temperature dependency of thermal properties can significantly
influence the results. In an effort to demonstrate this point, an initial-value problem similar to
that of (47) was posed for a Carbon/Carbon-type composite. Here, the temperature on the
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Fig. S. Profiles of Average temperatures in carbon/carbon at t =0.8. (f = 0.63343).

boundary was taken as

r-(O - ;) ={25000C 0~ ; ~ ;$
,r, OOC t,<; . (48)

The material properties assumed for the Carbon/Carbon constituents are listed in Table 2. The
temperature dependency of thermal conductivity, and specific heat for a graphite fiber was
inferred from the ATJ-S(WS) graphite data of (6). For the amorphous carbon matrix, the
thermal conductivity was determined by averaging the data given in [8]. The specific heat of the
matrix was assumed to be identical to that of the fiber. Densities of both fiber and matrix were
taken from [8}.

In the numerical computation corresponding to (48), t, was taken as 0.0087538, and as a
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result, E = 0.63343. Thus, while the temperature profiles depicted in Fig. 5-7 are unconfirmed by
either experimental data or "exact" computation, E is sufficiently small to ensure that results
are reasonably representative of a Carbon/Carbon composite possessing the geometry and
constituent properties of Table 2.

Figures 5-7 exhibit considerable differences between linear and nonlinear computations.

CONCLUDING REMARKS
A nonlinear mixture theory has been constructed for diffusion in a fiber-reinforced com

posite where the nonlinearity is induced by temperature dependent material properties. Without
losing the essential details of the local temperature distributions, the theory yields macroscopic
diffusion equations involving just one spatial variable. The computational efficiency of the
mixture equations, as compared to a direct numerical approach of the original problem, is
significant due to the nonlinearity involved. The excellent agreement between the mixture
theory predictions and the exact solution of a particular boundary value problem indicates that

t = 1.2
€ =0.63343

NONLINEAR

----- LINEAR

200

400

600

CO
1400

1200

T

00 2 4 6 8 10 12 14

X-X/A
Fig. 6. Evolution of average temperatures in carbon/carbon at x =1.2 (I =0.63343).
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Table 2. Material properties of carbon/carbon composite

Volwne Fractione: n(l) '" 0.1., n(Z) '" 0.8

DeneiUes P) = 1, 767 g/cm3• p(Z) = 1. 67 l/em3

Thennal Propertiee:

f(CII) ~ (TCCI) t
= t & --n=O n 1000

&0 &1 a~ &~ &4

~1) 1069.4Z -1119.78 646.40 -179.3Z7 19. lZ6]
XlC

k'Z) 178. ZO -:H.67S 6.015 0 0
XlC

kill 110.84 -106. 12 54.Z4 -13.5Z 1. 1647
rr

ki2) 178.Z0 -31. 678 6.015 0 0
rr

~(l) 0.2937 1.0962 -0.8448 0.3129 -0.0436

~2) 0.2776 1.0361 -0.7984 0.2958 -0.0412

the model proposed is quite effective. In addition. it appears likely that the theory may be
extendable to a wide variety of other composite geometries of interest.

Acknowledgement-The authors wish to thank Dr. Kay Lie of Systems. Science and Software for performing the "exact"
two-dimensional finite-element calculations.
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